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A B S T R A C T

Accurate prediction of the trajectory of Alzheimer’s disease (AD) from an early stage is of substantial value for
treatment and planning to delay the onset of AD. We propose a novel attention transfer method to train a 3D
convolutional neural network to predict which patients with mild cognitive impairment (MCI) will progress
to AD within 3 years. A model is first trained on a separate but related source task (task we are transferring
information from) to automatically learn regions of interest (ROI) from a given image. Next we train a model
to simultaneously classify progressive MCI (pMCI) and stable MCI (sMCI) (the target task we want to solve)
and the ROIs learned from the source task. The predicted ROIs are then used to focus the model’s attention on
certain areas of the brain when classifying pMCI versus sMCI. Thus, in contrast to traditional transfer learning,
we transfer attention maps instead of transferring model weights from a source task to the target classification
task. Our Method outperformed all methods tested including traditional transfer learning and methods that used
expert knowledge to define ROI. Furthermore, the attention map transferred from the source task highlights
known Alzheimer’s pathology.
1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative
disease in the elderly [1]. It is characterized by the progressive de-
cline of memory functions and significant difficulties with retaining
independence in simple daily activities [2,3]. In this paper we focus
our research on Mild Cognitive Impairment (MCI). MCI is known as
an intermediate stage for individuals between the normal cognitive
change of ageing and early dementia. It is reported that 12% to 15%
of patients who have MCI will progress to AD annually [4]. However,
AD is very challenging to diagnose as the symptoms can be similar to
other diseases and the cause of AD is not well understood [3,5]. Unfor-
tunately, AD is not curable and the decline of cognitive impairment is
irreversible [6].

Accurately predicting whether an MCI patient will convert to AD
using Magnetic Resonance Imaging (MRI) is of significant importance.
This information is critical for clinical trials, decisions for early in-
terventions, and to maximize the chances of delaying onset. It also
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E-mail address: z.he@latrobe.edu.au (Z. He).

1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

gives patients and their families time to draw a plan in advance for
the management of treatment, care, and cost. In this paper, we are
focused on predicting progressive MCI (pMCI) versus stable MCI (sMCI)
trajectories from MRI images. pMCI (sMCI) is defined as (not) being
diagnosed with AD following a previous MCI diagnosis. Specifically,
our goal is to take a single MRI image of a patient diagnosed with MCI
at a given time and accurately predict whether they will be diagnosed
with AD within 3 years. This is a very challenging task since the brain
may undergo a lot of change within the 3 year period.

We use convolutional neural networks (CNN) to solve this problem
by leveraging data labelled for related tasks. Datasets for classifying
pMCI versus sMCI are typically small (593 subjects in our dataset)
since it requires repeated MRI scans to compare baseline versus later
diagnosis. In contrast, datasets with AD versus CN labels or cognitive
subscale labels such as ADAS-cog and CDR-SB are typically larger (in
our case we have 1587 subjects) since only a single MRI scan is needed
to measure these values. An interesting research question is how can
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we best use the images from the entire 1587 subjects? A traditional
method for achieving this is to use transfer learning [7,8], where model
weights learned from a source classification task (e.g. Alzheimer’s
Disease/Cognitively normal (AD/CN), high/low Alzheimer’s Disease
Assessment Scale–Cognitive Subscale (ADAS-cog) score, high/low Clini-
cal Dementia Rating scale Sum of Boxes (CDR-SB) score) are transferred
to the target classification task (pMCI/sMCI). In this paper the term
source task is used to define the task we want to transfer information
from and the term target task refers to the actual task we want to
solve. We propose a novel alternative method where an attention map
from the source task is transferred to the target task instead of model
weights. This mimics how a radiologist would transfer their knowledge
of the important regions of interest (ROI) learned from previous tasks
to a new task. Existing ROI based pMCI versus sMCI classification
approaches [7,9] directly identify ROI from prior expert knowledge.
In contrast, our method automatically learns the ROI via attention
maps derived from the source task. Furthermore we found our way of
learning ROI from the source task outperforms methods that assign ROI
based on prior expert knowledge. This may be attributable to the fact
that the attention maps generated by our model are tailored to each
image rather than the same ROI assigned to all images as is the case
for traditional ROI based solution that use expert knowledge.

We propose a novel method called Class Activation Attention Trans-
fer (CAAT) to solve the pMCI versus sMCI problem using only baseline
MRI images. CAAT classifies between pMCI and sMCI by transferring
attention from a related source classification task to our target clas-
sification task. It learns the discriminative brain areas created from
a source task via the output of class activation maps (CAMs) [10]
without using prior expert knowledge to determine the ROIs. The CAMs
identify parts of the brain that were salient for a related task, such
as discriminating AD from CN and predicting cognitive performance,
and uses this information to inform our model of which brain regions
to pay particular attention to. We then train a 3D CNN model to
simultaneously predict the source CAM for the target task images and
use the predicted CAM as an attention map for solving the target
classification task of pMCI and sMCI. Visualizations of the attention
maps predicted by our CAAT approach show that the model is able to
place attention on parts of the brain that are known to be important for
diagnosing Alzheimer’s disease. The highlighted areas are also coherent
with cognitive test scores.

Experimental results on the ADNI dataset show that CAAT achieves
accuracy of 74.61 for classifying between pMCI and sMCI using only
whole 3D images of the brain and no other ancillary information.
Traditional transfer learning performs worse than CAAT by achieving
73.03 classification accuracy. Finally, a baseline method [11] that
only uses whole 3D brain scans without using transfer learning or
attention only achieved an accuracy of 70.84 in our experiments.
Furthermore, compared to the other methods, our CAAT ensemble
method achieves more balanced results of F1 score, the sensitivity, and
specificity of 0.75, 0.75, and 0.75 respectively. Our innovations and
major contributions include:

1. We developed a novel method called CAAT for transferring
attention information from a source task to a target task that
provides an alternative to traditional transfer learning. This
general methodology can be applied to any existing task where
the source and target tasks share similar regions of interest.

2. We applied CAAT to the problem of pMCI versus sMCI classi-
fication using the three different source classification tasks of
CN versus AD, high versus low ADAS-cog score, high versus low
CDR-SB score.

3. Experimental results for the ADNI dataset show CAAT achieves
state-of-the-art performance for pMCSI versus sMCI classifica-
tion. Even outperforming ROI methods which require prior hu-
2

man expert knowledge to identify areas of interest.
2. Related works

As mentioned in the introduction this paper is focused on solving the
problem of sMCI versus pMCI classification. The most common methods
for solving this problem use biomarkers in combination with machine-
learning [8,12]. Mathotaarachchi et al. [12] employed a voxel-wise
logistic regression method to extract the most discriminative features
(dimensionality reduction) from amyloid PET images and matching
T1-weighted MRI imaging. They also used demographic and APOE4
genotype data. Finally, MMSE scores and CDR values were also used.
These features were fed into a random forest classifier. In the works
of B. Cheng et al. [8], each subject image had 93 manually-labelled
regions-of-interest (ROIs) (a 93- dimensional feature vector) based on
the GM tissue volume. These features were concatenated with the base-
line MRI and cerebrospinal fluid (CSF) data. First, they were trained via
SVMs to get a list of source domain labels (AD vs. CN, MCI vs. CN, AD
vs. MCI, and pMCI vs. sMCI). Secondly, they combined these labels and
created a multi-source domain feature matrix. The similarity was mea-
sured between the residual vectors to get an estimated domain label.
Finally, after using dimensionality reduction on the selected features,
they fed the most informative features to an SVM for classification. This
method required prior knowledge about brain structure as it needs to
define ROIs as the first step. Our proposed CAAT method automatically
learns the important ROI from the source task.

There are many methods that have used CNNs to help solve the sMCI
versus pMCI classification problem. Liu and Cheng et al. [13] proposed
a 3D patch-level CNN model. They used a 3D CNN model to extract
features from MRI and PET images and then concatenated the features
to feed into 2D CNN layers for classification. Lin et al. [7] designed an
ROI-based approach that first used 2.5D patch-based CNNs to extract
features while performing AD and CN classification. They then used the
pre-trained AD/CN feature extractor to extract features for pMCI/sMCI
classification. After that, a 2.5D image was created from transverse,
coronal, and sagittal plane centred at the same point. These features
were combined with the features obtained from FreeSurfer [14]. Both
feature vectors used PCA for dimensionality reduction and then were
concatenated into one feature vector. Finally, the feature representa-
tions were fed into an extreme learning machine (ELM) to perform the
classification. In contrast to [13] we only use the MRI images and do
not use PET images. We compare to [7] we transfer attention from the
source to the target task instead of the weights of the neural network.

Basaia et al. [15] used data augmentation techniques like flips,
rotations, cropping to increase training set size and trained the data
using a VGG-like network. Liu and Zhang et al. [16] proposed a land-
mark based sMCI versus pMCI classification method which firstly uses
a landmark prediction application [17]2 to obtain the top 50 landmarks
pretrained on an AD versus CN classification task. After obtaining the
50 landmarks, each landmark is used to generate multiple 3D patches
by shifting the centre point for each landmark a few pixels multiple
times. This is a form of data augmentation. After creating a bag of
patches for each subject, they fed each patch into a 3D CNN to create
learned features for each patch. Then concatenate the features for each
patch together and feed that into an MLP to perform sMCI versus pMCI
classification. In Lian and Liu et al.’s work [18], they first used the
landmark prediction application to choose the top 120 landmarks to
create proposal locations. After that, they feed all those patches into
a 3D CNN to create a patch-level feature representation. These patch-
level features are then used as the input to the subsequent region-level
sub-networks to get the discriminative capacity of the corresponding
region. Finally, the region-level feature representations and the classi-
fication scores of the region-level sub-networks are concatenated and
processed by the subject-level sub-network. In contrast to [15] our
method transfers attention from a source task instead of performing

2 https://github.com/zhangjun001/AD-Landmark-Prediction.

https://github.com/zhangjun001/AD-Landmark-Prediction
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data augmentation to improve performance. When compared to [16,
18] our method uses CAM heatmaps from the source task to determine
where to focus attention instead of ROI-based patch selection.

There has been many existing works in computer vision [19–21],
and medical imaging [22–24] that use class activation maps (CAMs) for
visualizing the impact of input pixels to the predicted class. In contrast,
we use CAMs to transfer attention from the source task to the target
task. Hence, CAMs is used in a novel way to improve final classification
performance on the target task instead of using CAMs to analyse model
decision making.

3. Materials and methods

In this section, we first introduce how we set up the experimental
datasets. We show and explain the predicted heatmaps (CAM images)
generated from the different pretraining datasets such as AD versus
CN, high versus low ADAS-cog, and high versus low CDR-SB. We then
describe in detail our class activation attention transfer method.

3.1. Subjects and data acquisition

This paper uses the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset3. The primary goal of ADNI is to detect AD at the
earliest possible stage and track the data trajectory of AD via studying
patients’ clinical, imaging, genetic, and biochemical biomarkers. To
evaluate the performance, we performed 5-fold cross-validation of the
dataset.

In this study, the subjects used were categorized into two groups:
progressive MCI (pMCI) and stable MCI (sMCI), based on the diagnosis
of their follow-up visits within 36 months. At the start (baseline time),
all selected subjects were diagnosed with MCI, early MCI (EMCI), or
late MCI (LMCI). However, if a subject was diagnosed with Dementia
within the following 36 months, he/she was grouped into pMCI; and
if the patient’s diagnosis remained as MCI, we categorized him/her as
sMCI.

In our experiments we performed pre-training on three tasks using
ADNI1 and ADNI2 datasets. The first task was AD versus CN classifi-
cation with 508 AD versus 508 CN images. The second and third tasks
were high versus low CDR-SB and ADAS11 cognitive score classification
using 1243 training images of which 382, 460, 401 were classified as
MCI, CN and AD respectively and 310 testing images comprising 93
MCI, 109 CN and 108 AD.

3.2. Image preprocessing

All the brain MR images acquired from ADNI1 and ADNI2 had
undergone some steps of preprocessing such as N3 Intensity non-
uniformity correction, B1 non-uniformity correction, and 3D Gradwarp
correction for gradient nonlinearity if necessary. For better differenti-
ating MRI images among subjects, a further preprocess was performed.
First, N4ITK was used for intensity non-uniformity correction by the
ANTS N4 BiasField Correction pipeline. The toolkit is available on the
website4. Then, we first perform linear (affine) registration using the
LIRT function from the FSL software package to align the image to the
emplate MNI125. We then perform non-linear registration using FNIRT
n the output of FLIRT. Doing the linear registration first helps us to
educe the distortion caused by the subsequent nonlinear registration.
inally, all nonlinearly registered images were cropped to an identical
ize of 169 𝑥 208 𝑥 179 with 1 mm3 isotropic voxels for computational

efficiency. The FSL software package for brain extraction and regis-
tration can be acquired on the website (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki)5.

3 http://adni.loni.usc.edu.
4 http://stnava.github.io/ANTs/.
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https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
We found the class activation map (CAM) [10] for a classifier
trained to classify between AD versus CN classification contained a lot
of highly useful information. Since the trained model needed to focus
its attention on the discriminative parts of the brain for separating
the classes. We pretrained a 5-layer CNN model for the classification
of AD and CN subjects. Fig. 1 shows examples of CAM heatmaps
for the AD class. The following brains are highlighted by the CAM
heatmaps: hippocampus, entorhinal cortex, and ventricles, etc. These
are consistent with traditional analysis of the brain anatomy of AD
disease [25].

We compared our approach against the landmark-based deep multi-
instance learning (LDMIL) method [16]. We preprocessed the MRI
images based on the approach used in [16]. We first performed N4
intensity non-uniformity correction and then applied linear registra-
tion to align the image to the template MNI125 using FSL. We then
performed linear alignment for all images to the provided template
image Img.nii.gz6. Finally, we used a mask to remove the cerebrum,
pons, spinal cord, etc regions from each MRI image.

3.3. Class Activation Maps (CAM)

Here we explain how classification activation maps (CAM) devel-
oped by B Zhou et al. [10] can be obtained from a trained classification
model. Zhou et al. [10] showed pretraining a CNN with a global
average pooling (GAP) layer inserted between the final convolution
layer and the output layer, can produce generic regional deep features
for a particular class. Moreover, by using heatmaps, CAM allows us to
visualize the discriminative object areas associated with a particular
predicted class. By simply upsampling the CAM to the given image
size, those areas associated with a particular class can be visualized
by overlaying the acquired heatmaps on the given images. The process
of generating CAMs can be described as follows:

For a given image, after training on a typical CNN, we get the
feature maps 𝑓𝑚(𝑥, 𝑦, 𝑧) at spatial location (x, y, z) in the last convolu-
tional layer, where m indicates the number of filters. The output CAM
𝑀𝑐 (𝑥, 𝑦, 𝑧) is defined as:

𝑀𝑐 (𝑥, 𝑦, 𝑧) =
∑

𝑚
𝑤𝑐𝑓𝑚(𝑥, 𝑦, 𝑧) (1)

where, 𝑤𝑐 is the weight matrix of the m-th filter associated with class
c. By stacking up all m outputs, the most discriminative regions can be
highlighted via a heatmap.

We found similar results when we visualized the class activation
maps for CDR-SB binary classification (high versus low CDR-SB score)
and ADAS-cog binary classification (high versus low ADAS-cog classifi-
cation). We use the median score as the threshold used to separate the
low and high score classes for both ADAS-cog and CDR-SB. For ADAS-
cog, the median is 10.33, and the median for CDR-SB is 1.5. The MMSE
scores are not used as their value distribution is highly skewed.

Figs. 2 and 3 show CAM images for CDR-SB and ADAS-cog binary
classification. These images allow us to verify that the CAMs are
indeed highlighting the known regions of interest that are pertinent to
diagnosing Alzheimer’s disease.

From the CDR-SB CAM images from Fig. 2 we can see all exam-
ples have some memory problems as the parts related to processing
long-term memory have been highlighted, such as the hippocampus,
entorhinal cortex, and prefrontal cortex, etc. Moreover, all these ex-
amples have some parts of their frontal lobe highlighted, which are
associated with judgement and problem planning problems. We can
also see the part of the parietal lobe highlighted in the examples. The
parietal lobe is related to attention, body awareness, sensations, and
movement coordination, etc.

From the ADAS-cog CAM images from Fig. 3 we can see the parts
related to short-term memory have been highlighted, such as the

6 https://github.com/zhangjun001/AD-Landmark-Prediction.
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Fig. 1. The generated CAMs associated with the AD category, for four different AD examples from the ADNI1 and ADNI2 datasets: the highlighted regions of the brain correspond
to the known regions of the brain: hippocampus, entorhinal cortex.
Fig. 2. The CAM results of the binary classification of CDR-SB scores, created on a 5-layer 3D CNN model. The CDR-SB scores for these four examples are 2, 3, 3, and 2.5
respectively.
Fig. 3. The CAM results of the binary classification of ADAS-Cog scores, created on a 5-layer 3D CNN model. The ADAS-Cog scores reflect subject-completed tests and observer-based
assessments. Note that higher score means more diseased. All four examples have above zero scores on the questions of Word Recall and Word Recognition.
hippocampus, entorhinal cortex, and prefrontal cortex, etc. Examples 2
and 3 have gotten above zero score for Question Constructional Praxis
and Orientation meaning these examples performed poorly in this task.
Accordingly, the part of the brain involved in processing information
(parietal lobe) and the part associated with short-memory tasks (frontal
lobe) such as planning and motivation are highlighted.

3.4. Class Activation Attention Transfer (CAAT)

Our aim is to use the information from the source task class activa-
tion maps described in the previous section to improve the accuracy of
4

models trained for our target task of pMCI versus sMCI classification.
Our model predicts the CAM produced by a model trained on the source
task and use the resultant heatmap as an attention map when predicting
pMCI versus sMCI.

In the rest of this section, we introduce our proposed Class Ac-
tivation Attention Transfer (CAAT) method. As shown in Fig. 4, the
proposed model consists of two parts: the source task and the tar-
get task. We employed the best performing subject-level architecture
in [11], a five-layer 3D CNN network, for the target task of our model.
Table 1 displays a precise description of the CNN architecture used in
the target and source task phases. The source task CNN architecture is
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Fig. 4. Illustration showing our proposed Class Activation Attention Transfer Network architecture consisting of two parts: the target task used to predict pMCI vs. sMCI, and the
source task used for producing the predicted CAM attention for the target task. The input 3D image size is [c = 1, w = 169, h = 208, d = 179], c is the channel size. 𝑤 is the
CAM weight matrix which is the spatial average of the Conv5 feature map produced by global average pooling (GAP). A is the network attention which calibrates the predicted
heatmap. Note that the resized CAM outputs the 3D heatmap 𝑅 with size [c = 1, w = 11, h = 13, d = 11] (the size of the feature map for the 4th CNN layer of the model). The
detailed model specifications for the target task and source task are presented in Table 1.
similar to the target task except for the last two FC layers (group 6) are
replaced by a global average pooling (GAP) layer.

The source task was to output the CAM for the three binary classi-
fication tasks of AD vs CN, high versus low ADAS-cog and high versus
low CDR-SB. We first train a model to perform each of these three
binary classification tasks. We then extracted the weight matrices 𝑤𝑐 of
the associated more diseased classes 𝑐 (AD, high ADAS-cog, and high
CDR-SB). Then each pMCI or sMCI image 𝐼𝑖 was fed into the 5-layer
CNN to extract the feature maps 𝑓𝑖 of the last CNN layer. Using the
formula (1), we got the output that was the predicted CAM 𝑀𝑐

𝑖 for
subject 𝑖. To use the predicted CAM 𝑀𝑐

𝑖 as attention for the target task,
𝑀𝑐

𝑖 need to be upsampled to the size of the predicted heatmap 𝑃𝑖 in
the target task and denoted it as 𝑅𝑖 = 𝑓𝑛(𝑀𝑐

𝑖 (𝑥, 𝑦, 𝑧)), where fn is an
upsampling function (in our study, 𝑓𝑛 = 1 as the source task and the
target task use the same CNN layer structure), 𝑅𝑖 ∈ 𝐑𝑊 ×𝐻×𝐿 (𝑊 ×𝐻×𝐿
is the size of the predicted heatmaps). We call 𝑅𝑖 the predicted CAM.
Note that 𝑅𝑖 represents a voxel-based vector, each element of the vector
has its value constrained between [0, 1].

In the target task, each MRI image 𝐼𝑖 was fed into the CNN model,
the feature maps 𝑓𝑚(𝑥, 𝑦, 𝑧) of the extraction layer 𝑒 (layer 𝐶𝑜𝑛𝑣4 in our
experiments) were extracted. Here, 𝑚 indicates the number of filters.
To reduce the dimensionality and increase the nonlinearity of the
predicted heatmap feature representation, the obtained feature maps
𝑓𝑚(𝑥, 𝑦, 𝑧) were then squeezed by using 3 Conv layers with 1 × 1 × 1
convolutions to create the predicted heatmap 𝑃 for 𝐼𝑖. So the size of
𝑓𝑚(𝑥, 𝑦, 𝑧) was reduced to 𝑃𝑖(𝑥, 𝑦, 𝑧). 𝑃𝑖(𝑥, 𝑦, 𝑧) represents the voxel-wise
feature vector. In order to make the output CAM 𝑅𝑖 from the source
task match with 𝑃𝑖 and work as the attention for the whole network,
we used MSE loss, which is formulated as:

𝐿(𝑃 ,𝑅) = 𝑀𝑆𝐸(𝑃𝑖 − 𝑅𝑖) (2)

where 𝑅𝑖 is the upsampled CAM for the subject 𝑖. 𝑃𝑖 is the squeezed
feature representation (heatmap) from the extraction layer of the image
5

for subject i. Both 𝑃𝑖 and 𝑅𝑖 are voxel-wise features with all values
constrained within the range of [0,1].

We replicated 𝑃 𝑚 times to create 𝑃 and then performed element
wise multiply with 𝑓𝑚 to produce 𝑃𝑟𝑑 = 𝑃 ⊗ 𝑓𝑚. We concatenated
𝑃𝑟𝑑 with 𝑓𝑚 in order to pass both the original CNN features 𝑓𝑚 and
the features with attention 𝑃𝑟𝑑 to the later classification layers. 𝑓𝑚
acted like a skip connection to allow the later layers to directly use
the original CNN features. This allows the model to separately learn
distinct features that are more particular to the target task of classifying
between pMCI and sMCI.

The loss for the whole network was the sum of the loss from the
target task network, and the loss between the predicted and target
heatmap mentioned in Eq. (2). It can be formulated as:

𝐿(𝑌𝑖, 𝑑𝑖, 𝑃𝑖, 𝑅𝑖) = 𝑎𝐿(𝑌𝑖, 𝑑𝑖) + 𝑏𝐿(𝑃𝑖, 𝑅𝑖) (3)

where 𝐿(𝑌𝑖, 𝑑𝑖) is the Cross-Entropy Loss between 𝑌𝑖 and 𝑑𝑖. 𝑌𝑖 is the
predicted diagnosis for subject i by the target task CNN, 𝑑𝑖 is the true
diagnosis for subject i. 𝐿(𝑃𝑖, 𝑅𝑖) is explained in (2). 𝑅𝑖 indicated the
output CAM by the source task network for subject i. 𝑃𝑖 is the predicted
heatmap from the extraction layer from the target task network. 𝑎 and 𝑏
were the coefficients for balancing the loss (in our experiment, 𝑎 = 0.8,
𝑏 = 1.0).

We used three types of pretrained CAM outputs (AD, high ADAS-
cog, and high-CDR-SB) as the attention for our proposed model. We
also ensembled the predictions made by the three CAAT models (CAM
of AD, high ADAS-cog and high CDR-SB) using majority voting to help
reduce the effects of overfitting.

4. Experiments and results

In this section, we explain how we set up the evaluation datasets of
the experiment. We compare our proposed network against rival meth-
ods in terms of classification performance. We have also conducted an
ablation study to determine how the attention part of CAAT contribute
to the overall performance.
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Table 1
5-layer CNN architecture used for the source task and the target task for predicting
pMCI vs. sMCI. The number of the channels from Conv1 to Conv5 are 8, 16, 32, 64,
and 128 respectively. The stride used from Conv2 to Conv5, for the 2 × 2 × 2 kennels,
s set as 2 and padding of 1, except the kennel (3 × 3 × 3) for the Conv1 is set as 1.
ll convolutions had 3 × 3 × 3 kernels, a stride of 1 and padding of 1. All convolutions
ad a padding of 1 × 1x1. The 2nd max pooling layers had a padding of (1, 0, 0).
he 3rd max pooling layers had a padding of (1, 1, 0). The input image to the model

s [c = 1, w = 169, h = 208, d = 179], here c is the channel size. Note that the
difference between the source task and the target CNN architecture is the last two FC
layers (group 6) in the target task are replaced by a global average pooling (GAP) layer
in the source task.

Group Target task layers Source task layers

1

3 × 3 × 3 kennels, 8 output channels
3 × 3 × 3 max pool, 1 stride
4 BatchNorm
Relu activation

2

2 × 2 × 2 kennels, 16 output channels
2 × 2 × 2 max pool, 2 stride
4 BatchNorm
Relu activation

3

2 × 2 × 2 kennels, 32 output channels
2 × 2 × 2 max pool, 2 stride
4 BatchNorm
Relu activation

4

2 × 2 × 2 kennels, 64 output channels
2 × 2 × 2 max pool, 2 stride
4 BatchNorm
Relu activation

5

2 × 2 × 2 kennels, 128 output channels
2 × 2 × 2 max pool, 2 stride
4 BatchNorm
Relu activation

6
nn.Linear (128 * 5 * 6 * 5, 1300), Relu Global average pooling
nn.Linear (1300, 256), Relu
Softmax activation Softmax activation

4.1. Dataset splits

In our paper we have adopted the same ADNI 1 and ADNI 2
dataset splits used in Wen et al.’s review paper [11]. The patient ids
for the splits can be downloaded from7. The reason is Wen et al.
re-implemented most of the best performing Alzheimer’s Disease classi-
fication methods and benchmarked their sMCI and pMCI classification
performance using the ADNI dataset. By adopting the dataset splits of
Wen et al. [11], we can compare our algorithms against the different
methods implemented in [11]. The dataset consists of 298 sMCI and
295 pMCI participants retrieved from datasets ANDI1 and ADNI2. Each
subject had one structural T1 weighted MRI scan taken at the baseline.
The corresponding neuropsychological data such as MMSE, CDR-SB,
and ADAS-cog were also recorded in the dataset. The demographic
information of the participants used in this paper is summarized in
Table 2.

4.2. Experimental setup

We performed all the experiments by using the stochastic gradient
descent (SGD) optimizer for 65 epochs with the initial learning rate of
8𝑒 − 4 and a batch size of 4. The learning rate was decreased by 0.5
after every 20 epochs. We trained our models on a GeForce RTX 2080
Ti GPU. We used the Pytorch deep learning framework to implement
and train our CNN models.

We found the above training parameters gave best performance at
the end of model tuning. We found the models converge before 65
epochs. Using the SGD optimizer with manual reduction of the learning
rate after every 20 epochs helped the model converge to a more stable

7 https://github.com/aramis-lab/AD-DL.
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Table 2
The Demographic and clinical characteristics of the subjects included in this study. SD:
Standard Deviation.

sMCI(298) pMCI(295)

Female/male 123/175 119/176
Age (SD) 72.3 (7.4) [55–88.4] 73.78 (6.9) [55.1–88.3]
MMSE (SD) 28.0 (1.7) [23–30] 26.8 (1.8) [19–30]
ADAS11 (SD) 8.5 (3.5) [2–21.3] 13.0 (4.5) [0–27.67]
CDRSB (SD) 1.2 (0.6) [0.5–3.5] 2.0 (1.0) [0.5–5]

accuracy compared to using automatic optimizers such as ADAM. We
used a batch size of 4 due to the large memory consumption of the
large 3D CNN models.

4.3. Evaluation measures and comparison methods

Our dataset consists of 593 MRI images, consisting of 298 sMCIs
and 295 pMCIs images. We performed 5 fold cross validation using the
same data splits as that used in [11]8. In order to gain a comprehensive
view of the performance of the algorithms, we used the following four
evaluation metrics for the model performance include sensitivity (SEN),
specificity (SPC), F1 score (F1) and accuracy (ACC).

Our experimental study included the following methods:

• Baseline 3D CNN: To evaluate the classification performance
of our model, the 5-layer 3D CNN model used in [11] was
implemented as the baseline model.

• Transfer learning AD/CN, CDR-SB, ADAS: We applied the tradi-
tional transfer learning on the Baseline 3D CNN model by using
the pretrained network weights obtained from three different
classification tasks: CN vs. AD, high versus low ADAS-cog score,
and high vs. low CDR-SB score, respectively.

• 6-Conv Transfer learning AD/CN, CDR-SB, ADAS: We added
one more convolutional layer on the Baseline 3D CNN model
and made a 6-layer 3D CNN model in order to provide a fairer
comparison with CAAT in terms of the number of the network
parameters and model depth. We also applied the traditional
transfer learning method (pre-training on CN vs. AD, high vs. low
ADAS-cog score, and high vs. low CDR-SB score) on this 6-layer
3D CNN model.

• 6-Conv Transfer learning ensemble: The three predictions of 6-
Conv Transfer learning AD/CN, 6-Conv Transfer learning CDR-SB,
6-Conv Transfer learning ADAS were ensembled and the final result
was decided by a majority voting method.

• CAAT AD, CAAT CDR-SB, CAAT ADAS: We report the results of
three implementations of our CAAT model, each with one of the
following source tasks: AD versus CN classification; high versus
low ADAS cog score classification and; high versus low CDR SB
Score classification.

• CAAT ensemble: In order to reduce the effects of overfitting, the
prediction results of CAAT AD, CAAT CDR-SB, CAAT ADAS were
ensembled using majority voting.

• Transfer Learning AD/CN + CAAT AD, Transfer Learning CDR-
SB + CAAT AD, Transfer Learning ADAS + CAAT AD: We
applied the traditional transfer learning method for the target
network part on Conv1, Con2, and Conv3 layers by using pre-
trained weights of classification tasks for CN versus AD, high
versus low ADAS-cog score, and high versus low CDR-SB score,
respectively. Meanwhile, we passed the predicted CAM associated
with AD from the source task to the target task network working
with the predicted heatmap as the transferred attention as well.
Hence these methods use both traditional transfer learning and
also CAAT to transfer attention maps from the source task of AD
versus CN classification.

8 https://github.com/aramis-lab/AD-DL/tree/master/data/ADNI.

https://github.com/aramis-lab/AD-DL
https://github.com/aramis-lab/AD-DL/tree/master/data/ADNI
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Table 3
Experimental results comparing existing CNN-based methods for pMCI versus sMCI classification against variants of our CAAT method. For fair
comparison, all the existing methods reported in this table were trained and tested using the same train/validation splits as reported on the
review paper [11]. The best results for each evaluation metric is highlighted in bold text font. SEN, SPE, F1 and ACC refer to the sensitivity,
specificity, F1 score and accuracy metrics respectively. The numbers in parentheses report the variance value.
Model pMCI vs. sMCI

SEN SPE F1 ACC(%) AUC

Baseline 3D CNN 0.71 (0.005) 0.71 (0.003) 0.71 (0.003) 70.84 (0.001) 0.758 (0.003)
3D ROI-based CNN [7] – – – 74.00 –
3D patch-level CNN [13] – – – 70.00 -
LDMIL [16] 0.70 (0.004) 0.74 (0.004) 0.71 (0.002) 71.68 (0.002) 0.761 (0.004)
CAAT AD 0.70 (0.004) 0.75 (0.004) 0.72 (0.001) 73.03 (0.002) 0.779 (0.002)
CAAT CDR-SB 0.75 (0.003) 0.71 (0.006) 0.73 (0.002) 72.70 (0.002) 0.773 (0.002)
CAAT ADAS 0.73 (0.006) 0.74 (0.006) 0.73 (0.003) 73.03 (0.002) 0.777 (0.003)
CAAT ensemble 0.75 (0.004) 0.75 (0.006) 0.75 (0.002) 74.61 (0.002) 0.780 (0.003)
• Transfer Learning + CAAT AD ensemble: This is similar to
CAAT ensemble, we ensembled the three predictions of Transfer
Learning AD/CN + CAAT AD, Transfer Learning CDR-SB + CAAT
AD, Transfer Learning ADAS + CAAT AD using majority voting.

For our CAAT technique, when training the 5 layered CNN model
sed for the source task of AD versus CN classification, we stopped the
raining early when the model reached 84.6% validation accuracy. We
ound if we trained the model to its highest validation accuracy of 92%,
he resultant CAM was not as helpful when used as the attention map
n the target task of pMCI versus sMCI classification. This may be due
o the model overfitting the source task if we do not stop early.

.4. Results comparing CAAT with existing methods

Experimental results in Table 3 indicate that our proposed CAAT
nsemble method has the highest accuracy and AUC among all methods
ested. Compared with 3D ROI-based CNN, the CAAT ensemble model
rchives slightly higher accuracy without requiring expert knowledge.
he results show that the source task in our CAAT method is able to
etect the important brain areas via generating CAM and the attention
echanism enable the network focus on the important brain informa-

ion, which are helpful for classifying pMCI and sMCI in the target
ask.

We re-implemented the landmark-based deep multi-instance learn-
ng (LDMIL) method [16]. Based on [16], we first used the landmark-
etection application [17]9 to obtain the top 50 landmarks and then
andomly shifted each centre point a few voxels to create the bag of
atches for each subject. Finally, we fed the generated patches into the
ulti-instance based CNN framework specified by [16] to classify each

mage as sMCI or pMCI. The results in Table 3 show our CAAT ensemble
utperforms LDMIL in all metrics measured. This can be attributed
o CAAT’s ability to leverage knowledge learned from the source AD
ersus CN classification to better focus its attention on regions of the
rain that is better at discriminating between AD versus CN based on
he characteristics specific to each brain image. In contrast, LDMIL uses
he same landmarks for all brain images.

CAAT ensemble achieved an accuracy of 74.61 compared to 74
or the 3D ROI-based CNN method. Although this may seem like a
mall improvement, our attention transfer approach does not require
ny expert knowledge. Our model obtains all its information from the
raining data. In contrast the 3D ROI-based CNN method requires expert
nowledge to first identify regions of interest. The model is then trained
n these hand identified areas of interest. The ability to automatically
dentify regions of interest allows our approach to be applied to a wider
ange of applications where expert knowledge may not exist.

9 https://github.com/zhangjun001/AD-Landmark-Prediction.
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4.5. Model architecture comparison

In this section we investigate whether using different CNN architec-
tures as backbone can all benefit from our attention transfer method. To
this end we implemented a 3D version of the popular MobileNetV2 [26]
network. MobileNetV2 is a 2D CNN architecture designed for small
devices. Therefore it is a very efficient feature extractor that uses
features such as lightweight depthwise separable convolutions, and thin
bottleneck blocks without any non-linearity. These weight layers allow
MobileNetV2 to go much deeper while still imposing a small compute
and memory footprint thus making it ideal for inflating to 3D. We used
the 3D inflated version of MobileNetV2 from [27]10. We implemented
CAAT with 3D Moblienetv2 as the CNN backbone to investigate if
attention transfer can benefit this very different 3D CNN architecture
compared to our default architecture.

We applied CAAT to 3D MobileNetV2 (3D MBNv2) in the same way
as our default 3D CNN architecture. We use 3D MobileNetV2 both for
source tasks and target tasks. In order to get the output CAM on the
source task, we first trained three binary classifiers (AD versus CN, high
versus low ADAS-cog, and high versus low CDR-SB) on 3D MBNv2.
Then we extracted the weight matrices of the associated classes and
created the predicted CAM for each subject. The output CAM size is 22
𝑥 13 𝑥 12. Since, MBNv2 has 19 residual bottleneck layers. We added
attention at the end of the 13th bottleneck. We used 3D MBNv2 with
width multiplier of 0.5 and trained the model using SGD for 200 epochs
with the initial learning rate of 8𝑒 − 4 and a batch size of 2.

The results are displayed in Table 5. The results convincingly show
using CAAT on top of the 3D MBNv2 as the backbone results in signifi-
cant improvements in performance. Each of the variants of CAAT with
3D MBNv2 backbone outperform 3D MBNv2 without using attention
transfer for almost all metrics. The CAAT ensemble (3D MBNv2) out-
performs 3D MBNv2 without attention by at least 0.03 for all metrics
tested. These results show our attention transfer method is beneficial
across CNN architectures.

When comparing results between the default CNN backbone and
the 3D MBNv2 backbone the results show without attention transfer
3D MBNv2 performs worse than the baseline 3D CNN. However, after
adding the attention transfer, 3D MBNv2 performs about the same
as the default 3D CNN with attention transfer. For example CAAT
ensemble versus CAAT ensemble (3D MBNv2) perform about the same,
with each model winning in some metrics while losing in others. This
shows attention transfer is able to raise the performance of poorer
performing models to the same level as higher performing models.

We also noticed the 3D MBNv2 model converges much faster dur-
ing training when using CAAT (converges at the 60th epoch) versus
without CAAT (converges at the 110th epoch). We attribute this faster
convergence to CAAT’s ability to identify the most important features
and thereby focus the training on the most important regions.

10 https://github.com/okankop/Efficient-3DCNNs.

https://github.com/zhangjun001/AD-Landmark-Prediction
https://github.com/okankop/Efficient-3DCNNs
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Table 4
Experimental results comparing traditional transfer learning against our CAAT variants. The best results for each evaluation metric is highlighted
in bold text font. SEN, SPE, F1 and ACC refer to the sensitivity, specificity, F1 score and accuracy metrics respectively. The numbers in parentheses
report the variance value. Note that in the table Model TL refers to Transfer learning and CAAT by itself refers to CAAT AD. For example TL
AD/CN + CAAT refers to Transfer learning AD/CN + CAAT AD.
Model pMCI vs. sMCI

SEN SPE F1 ACC(%) AUC

Baseline 3D CNN 0.71 (.005) 0.71 (.003) 0.71 (.003) 70.84 (.001) 0.758 (.003)
TL AD/CN 0.71 (.005) 0.71 (.003) 0.71 (.003) 71.35 (.003) 0.772 (.002)
TL CDR-SB 0.67 (.007) 0.75 (.003) 0.70 (.003) 71.00 (.003) 0.768 (.002)
TL ADAS 0.74 (.005) 0.67 (.007) 0.72 (.002) 72.06 (.001) 0.768 (.002)
TL ensemble 0.73 (.005) 0.72 (.004) 0.72 (.002) 72.18 (.002) 0.773 (.002)
6-Conv TL AD/CN 0.71 (.002) 0.76 (.007) 0.73 (.002) 73.03 (.003) 0.777 (.002)
6-Conv TL CDR-SB 0.72 (.007) 0.71 (.003) 0.72 (.003) 71.85 (.002) 0.768 (.003)
6-Conv TL ADAS 0.70 (.005) 0.72 (.002) 0.71 (.003) 71.34 (.002) 0.773 (.003)
6-Conv TL ensemble 0.72 (.005) 0.75 (.004) 0.73 (.003) 73.37 (.003) 0.782 (.003)
CAAT AD 0.70 (.004) 0.75 (.004) 0.72 (.001) 73.03 (.002) 0.779 (.002)
CAAT CDR-SB 0.75 (.003) 0.71 (.006) 0.73 (.002) 72.70 (.002) 0.773 (.002)
CAAT ADAS 0.73(.006) 0.74 (.006) 0.73 (.003) 73.03 (.002) 0.777 (.003)
CAAT ensemble 0.75 (.004) 0.75 (.006) 0.75 (.002) 74.61 (.002) 0.780 (.003)
TL AD/CN+CAAT 0.72 (.004) 0.74 (.007) 0.73 (.002) 73.03 (.002) 0.774 (.002)
TL CDR-SB+CAAT 0.72 (.012) 0.75 (.002) 0.73 (.004) 73.52 (.002) 0.772 (.002)
TL ADAS+CAAT 0.75 (.002) 0.71(.003) 0.73 (.001) 72.86 (.001) 0.775 (.003)
TL+CAAT ensemble 0.75 (.006) 0.73 (.007) 0.74 (.003) 74.04 (.002) 0.776 (.003)
Table 5
Experimental results comparing CAAT using MobileNetV2 backbone versus CAAT using the default backbone. Note CAAT AD (3D MBNv2)
refers to using CAAT on top of the 3D MobileNetV2 backbone for both the source and target tasks. The source task is pretrained on AD versus
CN classification. The best results for each evaluation metric is highlighted in bold font text. SEN, SPE, F1 and ACC refer to the sensitivity,
specificity, F1 score and accuracy metrics respectively. The numbers in parentheses report the variance value.
Model pMCI vs. sMCI

SEN SPE F1 ACC(%) AUC

Baseline 3D CNN 0.71 (.005) 0.71 (.003) 0.71 (.003) 70.84 (.001) 0.758 (.003)
CAAT AD 0.70 (.004) 0.75 (.004) 0.72 (.001) 73.03 (.002) 0.779 (.002)
CAAT CDR-SB 0.75 (.003) 0.71 (.006) 0.73 (.002) 72.70 (.002) 0.773 (.002)
CAAT ADAS 0.73(.006) 0.74 (.006) 0.73 (.003) 73.03 (.002) 0.777 (.003)
CAAT ensemble 0.75 (.004) 0.75 (.006) 0.75 (.002) 74.61 (.002) 0.780 (.003)
3D MBNv2 0.70 (.008) 0.70 (.007) 0.69 (.002) 69.48 (.002) 0.749 (.004)
CAAT AD (3D MBNv2) 0.74 (.002) 0.70 (.000) 0.72 (.001) 71.84 (.001) 0.773 (.001)
CAAT ADAS (3D MBNv2) 0.68 (.005) 0.72 (.006) 0.70 (.002) 70.67 (.002) 0.765 (.003)
CAAT CDR-SB (3D MBNv2) 0.73 (.004) 0.75 (.003) 0.74 (.002) 73.54 (.002) 0.800 (.003)
CAAT ensemble (3D MBNv2) 0.73 (.004) 0.75 (.004) 0.74 (.002) 73.86 (.002) 0.799 (.003)
4.6. Impact of transfer learning

We further conducted a series of experiments to investigate the
impact of traditional transfer learning methods. The results are reported
in Table 4. We make the following observations from the experimental
results. The results show traditional transfer learning consistently out-
performs the baseline solution. This is likely due to transfer learning’s
ability to leverage the larger dataset used for the source tasks (AD
versus CN, high versus low ADAS-cog and high versus low CDR-SB
classification) to learn useful features for the target task in pMCI versus
sMCI classification.

The results show traditional transfer learning using 6 Conv Layers
generally perform better than traditional transfer learning using just
5 Conv layers. It verifies that using a deeper model can produce better
results. This maybe due to the extra hidden layer creating more abstract
and discriminative features than a shallower model.

Compared to the other models, our proposed CAAT ensemble model
achieves the highest performance for all metrics with the exception of
specificity and AUC where it only performs 0.01 and 0.002 worse for
SPE and AUC respectively than the best performer. In contrast, none
of the traditional transfer learning solutions consistently performs near
the best for all metrics. This demonstrates that the prediction ability of
the CAAT model is improved by using the attention mechanism. The
heatmap from CAM (AD, high ADAS-cog, and high CDR-SB) helps the
model to focus on the parts of the brain that was most discriminative
for the source task. Since both the source and target tasks are very
8

related, these attention heatmaps when applied to the target task helps
the model to ignore unimportant regions of the brain and thereby
help CAAT reduce the amount of overfitting. The results also show
combining traditional transfer learning and CAAT performs slightly
worse than using CAAT by itself.

The results for the 6 layer CNN transfer learning using AD/NC as
the source task performs slightly better than CAAT AD. However, the
results for the other source tasks of CDR-SB and ADAS show that CAAT
works better than the 6 layer transfer learning approach. This is likely
the reason why the ensemble version of CAAT performs significantly
better than the ensemble version of the 6 layer CNN transfer learning
method.

CAAT ensemble outperforms the 6 layer CNN transfer learning
ensemble for sensitivity, F1 score and accuracy, but gives similar
performance for specificity and AUC. It is important to perform well for
the sensitivity metric since higher sensitivity means CAAT ensemble is
able to better catch pMCI cases earlier and therefore give doctors time
to intervene earlier. CAAT ensemble is able to achieve higher sensitivity
without sacrificing specificity and AUC compared to the 6 layer CNN
transfer learning ensemble.

4.7. Hyper-parameter search for transfer learning

To ensure we provide a fair comparison of CAAT versus transfer
learning, we conducted a thorough hyper-parameter search to train the
best model using transfer learning. Specifically we tried different initial
learning rates and freezing different early layers in the model. We
tried the learning rate of 0.001, 0.0001, 0.0003, 0.0005, and 0.0008.
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Table 6
Experimental results of hyper-parameter search for transfer learning. The results are for the 6-Conv model with pretrained weights obtained
from classifying CN versus AD. (lr.0001) refers to using the learning rate of 0.0001, and (fix-l1) refers to freezing the first layer of the model,
(fix-l1l2) refers to freezing the first and the second layer of the model. The best results for each evaluation metric is highlighted in bold text
font. SEN, SPE, F1 and ACC refer to the sensitivity, specificity, F1 score and accuracy metrics respectively. The numbers in parentheses report
the variance value.
Model pMCI vs. sMCI

SEN SPE F1 ACC(%) AUC

6-Conv TL (lr.0001) 0.73 (.014) 0.69 (.004) 0.71 (.005) 71.01 (.003) 0.767 (.003)
6-Conv TL (lr.0003) 0.74 (.006) 0.72 (.003) 0.71 (.004) 71.34 (.003) 0.769 (.003)
6-Conv TL (lr.0005) 0.74 (.006) 0.71 (.005) 0.73 (.002) 72.56 (.002) 0.783 (.003)
6-Conv TL (lr.0008) 0.71(.002) 0.76 (.007) 0.73 (.002) 73.03 (.003) 0.777 (.002)
6-Conv TL (fix-l1) 0.68 (.004) 0.74 (.004) 0.70 (.003) 70.66 (.003) 0.778 (.002)
6-Conv TL (fix-l1l2) 0.70 (.011) 0.70 (.004) 0.70 (.004) 69.58 (.003) 0.773 (.003)
Table 7
Results of an ablation study of our CAAT AD method. The best results for each evaluation metric is highlighted in bold text font. SEN, SPE, F1
and ACC refer to the sensitivity, specificity, F1 score and accuracy metrics respectively. The numbers in parentheses report the variance value.
Model pMCI vs. sMCI

SEN SPE F1 ACC(%) AUC

CAAT AD-att-Conv3 0.705 (.006) 0.715 (.005) 0.710 (.002) 71.01 (.002) 0.768 (.002)
CAAT AD-intra-att 0.709 (.002) 0.715 (.004) 0.709 (.003) 70.68 (.003) 0.752 (.004)
CAAT AD-no signal 0.705 (.005) 0.722 (.005) 0.711 (.002) 71.34 (.001) 0.766 (.003)
CAAT AD 0.705 (.004) 0.753 (.004) 0.723 (.001) 73.03 (.002) 0.779 (.002)
The results for learning rate of 0.001 were omitted due to very poor
performance. We also tried freezing the weight of the first layer and
both the first and second layers. For this experiment we used the 6-Conv
model with pretrained weights obtained from classifying CN versus AD.

The results of the hyper-parameter search for transfer learning are
shown in Table 6. The results show that using a learning rate of
0.0008 has the best specificity, F1 score (equal best), and accuracy and
a learning rate of 0.0005 gives the best sensitivity, F1 score (equal
best), and AUC value. Hence in our experiments we used a default
initial learning rate of 0.0008 for transfer learning. In terms of freezing
layers, 6-Conv TL (fix-l1) and 6-Conv TL (fix-l1l2) shows the results
for freezing the first layer, first and second layers, respectively. The
results show freezing the tested combination of layers results in poorer
performance compared to fine tuning the entire model. Hence in our
experiments we perform transfer learning by fine tuning the entire
model.

4.8. Ablation study

We performed an ablation study to gain insights into our CAAT. The
results are reported in Table 7.

We observed that adding the attention on the layer Conv4 of the
CAAT model performs better than on the layer Con3. This is likely
due to the fact the latter convolutional layer (Conv4) learn more high
level features and patterns than the earlier layer (Conv3). The attention
derived from the higher level features is more likely to highlight larger
areas of importance than very detailed small regions. This coarser
grained attention will be less likely cause overfitting.

We perform the following tests to determine how the attention
impacts the performance of our proposed model. First, we turned off
the loss function between the predicted heatmap 𝑃 and the predicted
CAM 𝑅, we describe this model as CAAT AD-intra-task attention because
this means the model was no longer trying to train the attention to
mimic the attention from the source task. Additionally, we stopped
the model from using any attention by fixing each voxel value of the
predicted heatmap 𝑃 to a constant value of 1 / (11 𝑥 13 𝑥 11), where
the denominator is the heatmap size. We denote this model as CAAT
AD-no signal.

The results show that both CAAT AD-intra-task attention and CAAT
AD-no signal perform worse that our normal CAAT AD model. This
shows that attention learned only from the target task is not as effective
as attention transferred from the source task. Second, not using any
attention is worse than using transferred attention.
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The ablation study experiments show that the attention transfer
mechanism in our proposed CAAT method is critical to the good
performance of CAAT AD. The output CAM from the source task passed
to calibrate the predicted attention heatmap enables the network to
focus on the highly predictive parts of the brain based on knowledge
gained from performing the source task.

5. Conclusion

In this paper, we presented our Class Activation Attention Transfer
(CAAT) method which offers an alternative way of leveraging labelled
data from a source classification task to enhance the classification
accuracy of a target task. CAAT transfers attention from the source
task to the target task instead of transferring the weights. Our ex-
periments show transferring attention works better than transferring
weights for the pMCI versus sMCI classification task. In addition, when
we visualized the attention heatmaps (CAMs) that are transferred to
the target task, we found the regions highlighted by the heatmap
match known important regions for diagnosing Alzheimer’s disease.
Results also show that CAAT can outperform the previous state-of-
the-art region of interest-based solutions that required expert domain
knowledge to manually select regions of interest. In contrast, CAAT
automatically selects the regions of interest via the CAM heatmaps.

For future work, we would like to explore predicting, ADAS, MMSE,
CDR scores, or predicting brain age as the target task and using a
source task such as AD versus CN classification. A limitation of our
experimental setup is the use of 5 fold cross validation for both tuning
and selecting the models. This may lead to an optimistically biased
evaluation of the model performance. Hence an important extension
to our experiments is to use nested cross validation to overcome the
shortcoming with the standard 5 fold cross validation.
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